Eridian
eridian.xyzx.comGitHub
  • 📖Eridian Docs
  • Ethereum Dev
    • ✏️Ethereum Notes
      • 🎛️Technical Basics
      • 🪧Ethereum Addresses
      • 📚Ethereum State Explained
      • ⛽Gas Fees Explained
    • 🔧Useful Tools
      • ☁️Ethers
      • *️⃣Ethernal
    • 📝Solidity Notes
      • ❔Interview Questions
        • 🟢1. Easy - Interview Questions
        • 🟠2. Medium - Interview Questions
        • 🟡3. Hard - Interview Questions
        • 🔴4. Advanced - Interview Questions
      • 💡Note Ideas
      • ABI
      • abi.encodePacked
      • Abstract Contracts
      • Arrays
      • Casting
      • CEI - Checks, Effects, Interactions
      • Comments (NATSPEC)
      • Constructor
      • Contract Structure & Versions
      • Data - Storage vs Memory
      • Data - Storage Layout
      • Enum
      • Errors (require & revert)
      • Events
      • EVM Opcodes
      • External Contract Interaction
      • 🏗️External Dependencies
      • Functions
      • Function Modifiers
      • If / Else / For / While Loops
      • Inheritance
      • Interfaces
      • Keccak256
      • Library
      • Mappings
      • msg.sender
      • Objects & Types
      • OpenZeppelin
      • Payable
      • Public State Variable vs Function
      • Receive & Fallback
      • Security
      • Self Destruct
      • Send ETH (transfer, send, call)
      • Stack Too Deep
      • Structs
      • Style Guide
      • Time Units
      • Try / Catch
      • Typecasting
      • Using Directive
      • Variables, Consts & Immutable
      • Withdraws
    • ⚒️Foundry Notes
      • 📖Docs & GitHub Pages
      • 🤝Useful Commands
        • 🔨Anvil
        • 🪄Cast
        • 🔥Forge
      • 🧪Tests
        • Cheatcodes
      • 📝Useful Scripts
        • Deploy Contract Using Hex
    • 👾DeFi Challenges
      • 👨‍🚀Ethernaut
        • Ethernaut - Template
        • Level 1 - Fallback ⏺
        • Level 2 - Fallout ⏺
        • Level 3 - Coin Flip ⏺⏺
        • Level 4 - Telephone ⏺
        • Level 5 - Token ⏺⏺
        • Level 6 - Delegation ⏺⏺
        • Level 7 - Force ⏺⏺⏺
        • Level 8 - Vault ⏺⏺
        • Level 9 - King ⏺⏺⏺
        • Level 10 - Re-entrancy ⏺⏺⏺
        • Level 11 - Elevator ⏺⏺
        • Level 12 - Privacy ⏺⏺⏺
        • Level 13 - Gatekeeper 1 ⏺⏺⏺⏺
        • Level 14 - Gatekeeper 2 ⏺⏺⏺
        • Level 15 - Naught Coin ⏺⏺⏺
        • Level 16 - Preservation ⏺⏺⏺⏺
        • Level 17 - Recovery ⏺⏺⏺
        • Level 18 - Magic Number ⏺⏺⏺
        • Level 19 - Alien Codex ⏺⏺⏺⏺
        • Level 20 - Denial ⏺⏺⏺
        • Level 21 - Shop ⏺⏺
        • Level 22 - Dex ⏺⏺
        • Level 23 - Dex Two ⏺⏺
        • Level 24 - Puzzle Wallet ⏺⏺⏺⏺
        • Level 25 - Motorbike ⏺⏺⏺
        • Level 26 - DoubleEntryPoint ⏺⏺
        • Level 27 - Good Samaritan ⏺⏺⏺
        • Level 28 - Gatekeeper 3 ⏺⏺⏺
        • Level 29 - Switch ⏺⏺⏺⏺
        • Level 30 - Higher Order ⏺⏺⏺⏺
        • Level 31 - Stake ⏺⏺⏺
      • 💸Damn Vulnerable DeFi
    • 🔍Auditing
      • 🗞️Exploit Resources
      • 🔧Audit Tools
    • 🤖MEV
  • Infrastructure Docs
    • 💻Hardware
    • 🐧Linux
      • 📖Linux Glossary
      • ⌨️Linux Commands
      • 💾Installation
      • 🏗️Maintenance
      • 🖥️Ubuntu Desktop
      • 🛜ZeroTier
      • 🎞️TMUX
      • 🔵Bluetooth
    • ⛓️Ethereum Clients
      • ⚙️Execution Clients
        • ⛏️Geth
          • 💾Installation
          • ⌨️Useful Commands
          • 🏗️Maintenance
        • 🐻Erigon
          • 💾Installation
          • ⌨️Useful Commands
          • 🏗️Maintenance
        • 🧶Besu
          • 💾Installation
          • ⌨️Useful Commands
          • 🏗️Maintenance
      • 🤝Beacon Clients
        • 💡Lighthouse
          • 💾Installation
          • ⌨️Useful Commands
          • 🏗️Maintenance
        • 🪅Teku
          • 💾Installation
          • ⌨️Useful Commands
          • 🏗️Maintenance
      • 💎Validator Clients
        • 💡Lighthouse
          • 💾Installation
          • ⌨️Useful Commands
          • 🏗️Maintenance
      • ➕L2 Clients
        • 🔵Base
          • 💾Installation
          • ⌨️Useful Commands
          • 🏗️Maintenance
      • 💰MEV Boost
        • 💾Installation
        • 🏗️Maintenance
    • 🚨Alerting and Monitoring
      • 🔥Prometheus
      • 🌡️HealthChecks.io
      • 📟PagerDuty
  • General Dev
    • 💾Git Notes
      • Repos
      • Committing changes
      • Branches
      • Merging & Rebasing
      • PRs
Powered by GitBook
On this page
  • Ethereum's Global State
  • Contract Storage
  • Analogy with Mappings
  • Interactions and Independence
Edit on GitHub
  1. Ethereum Dev
  2. Ethereum Notes

Ethereum State Explained

In Ethereum, the entire state of the blockchain, including all accounts and smart contracts, can be thought of as a part of a large, shared state database. Each contract has its own storage, but it's not exactly like a "mapping within a mapping." Let's break this down:

Ethereum's Global State

  • Ethereum's blockchain can be conceptualized as a state machine, where the state includes all accounts (both externally owned accounts and contract accounts) and their balances, nonce, bytecode, and storage (for contract accounts).

  • This state is stored in a key-value store (the Ethereum Virtual Machine's state), where each key is an address (20 bytes), and the value is the account's state.

Contract Storage

  • Each smart contract on Ethereum has its own storage space, identified by its contract address. This storage is separate for each contract.

  • A contract's storage is a key-value store where both the key and value are 256 bits wide. In this storage, state variables of the contract are stored.

  • The way Solidity organizes these storage slots for a contract's state variables is deterministic and follows specific rules, but from the Ethereum protocol's perspective, it just sees a key-value store for each contract.

Analogy with Mappings

  • If we use the analogy of mappings, Ethereum's global state is like a huge mapping where each key is an account address, and the value is the account's state (including a contract's code and storage).

  • Within each contract, the storage can be thought of as another mapping, where the keys are essentially the storage slots (sequential for simple variables, computed through hashing for complex types like arrays and mappings) and the values are the contents of those slots.

Interactions and Independence

  • Each contract's storage is independent of others. When a contract is executed, it can only access its own storage directly (though it can call other contracts and trigger changes in their storage through these calls).

  • The Ethereum blockchain maintains the integrity and isolation of each contract's storage. This means that a contract cannot directly access or modify the storage of another contract unless explicitly programmed to do so through defined interfaces and function calls.

In summary, Ethereum's state is a large, shared state database, with each contract having its own isolated storage space. This storage space can be conceptualized as a key-value store, unique to each contract, where the contract's state variables are stored.

Last updated 1 year ago

✏️
📚